Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.14 Ф	Ризико-химические методы исследования								
наименование	дисциплины (модуля) в соответствии с учебным планом								
Направление подгото	вки / специальность								
22.03.02 МЕТАЛЛУРГИЯ									
Направленность (профиль)									
	22.03.02 МЕТАЛЛУРГИЯ								
Форма обучения	ванчов								
Год набора	2018								

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
Канд. те	ехн. наук, Доцент, Дубинин П.С.
	полжность инициалы фамилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Исследование данного вещества, материала или изделия может быть осуществлено различными методами. Простые качественные или количественные методы в настоящее время устаревают, поскольку далеко не всегда позволяют объяснить поведение веществ в производственном процессе, выявить причины появления некачественной продукции на производстве и разработать предложения по их предупреждению и устранению. В связи с этим все больше используются методы, в которых исследуемая система, определенном агрегатном состоянии, находящаяся зондируется электромагнитными излучениями различной частоты или пучками ускоренных информация элементарных частиц, a извлекается ИЗ спектральных характеристик излучения, прошедшего через вещество или отраженного им. Комплекс таких методов получил название физико-химических методов анализа веществ, материалов и изделий.

Изучение физико-химических методов анализа с привлечением знаний из соответствующих разделов физики, химии, математической статистики предметных установлению связей, способствует развивает навыки работы студентов, позволяет работу самостоятельной построить таким образом, чтобы учебные задачи перерастали в курсовые и дипломные работы. дисциплина должна вооружить бакалавров разнообразными методиками эксперимента, приобрести опыт экспериментальной работы и реализовать теоретические знания на практике.

Целью освоения дисциплины является овладение современными физико -химическими методами анализа веществ и материалов разнообразной природы, такими как дифракционные, спектральные, электронномикроскопические, термические.

1.2 Задачи изучения дисциплины

Задачами изучения дисциплины являются:

- изучение основных принципов и методов физико-химического анализа веществ, материалов и изделий;
- приобретение знаний по использованию технических средств для измерения свойств и контроля качества веществ, материалов и изделий из них;
- получение комплекса знаний и навыков использования современных информационно-коммуникационных технологий, глобальных информационных ресурсов в научно-исследовательской и расчетно-аналитической деятельности.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине							
ОПК-7: готовностью выбирать средства измерений в соответствии с требуемой точностью и условиями эксплуатации								
ОПК-7: готовностью выбирать	Знать средства измерений, контроля качества							

средства измерений в
соответствии с требуемой
точностью и условиями
эксплуатации

материалов и технической диагностики технологических процессов производства

Уметь выбирать приборы, датчики и оборудование для проведения экспериментов в соответствии с требуемой точностью и условиями эксплуатации Владеть навыками проведения экспериментов и регистрации их результатов

ПК-2: способностью выбирать методы исследования, планировать и проводить необходимые эксперименты, интерпретировать результаты и делать выводы

ПК-2: способностью выбирать методы исследования, планировать и проводить необходимые эксперименты, интерпретировать результаты и делать выводы

Знать современные методы исследования, применяемые в инженерной и исследовательской практике.

Уметь проводить физико-химические исследования процессов и материалов, включая стандартные и сертификационные испытания. Владеть навыками использования современных подходов и физико-химических методов к исследованию металлургических процессов.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

			(Сем	ест	p	
	Всего,						
Вид учебной работы	зачетных единиц (акад.час)	1	2	3	4	5	6

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.							
№ п/п			Занятия		тия семин	Самостоятельная			
	Модули, темы (разделы) дисциплины	лекционного типа		Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа,	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. Be	ведение								
	1. Предмет и задачи дисциплины. Основные методы физико-химического исследования вещества, материалов и изделий. Современная приборная и научно-методическая база. Основы методологии выбора средств измерений в соответствии с требуемой точностью и условиями эксплуатации.	1							
	2.							35	
2. Ди	іфракционные методы анализа			·					

1. Toomomyyyaayyya aayyanyy mayympayyanayyana dasaasaa					
1. Теоретические основы рентгеновского фазового					
анализа. Природа рентгеновского излучения.					
Рентгеновские спектры. Рентгенотехника:					
рентгеновские трубки и аппараты. Основные свойства					
рентгеновских лучей и области их применения.					
Волновые свойства рентгеновских лучей: отражение,					
дифракция, интерференция. Формула Вульфа-Брэгга и					
ее физический смысл. Съемка дифрактограмм и их					
расшифровка. Рентгенодифракционный метод анализа					
материалов. Методы получения рентгенограмм от моно-					
и поликристаллов. Схема получения дифракционной					
картины от поликристалла и способы её регистрации.					
Рентгеновская дифрактометрия. Схема съемки по	3				
Брэггу-Брентано. Рентгеновский дифрактрометр с					
поликаппиллярной оптикой XRD7000 Shimadzu.					
Качественный фазовый анализ вещества сложного					
состава с использованием базы данных дифракционных					
стандартов в виде международной картотеки JCPDS					
(ASTM). Автоматизация метода рентгенофазового					
анализа с помощью программного обеспечения					
информационно-поисковой системы фазовой					
идентификации. Количественный фазовый анализ.					
Использование дифракционных методов анализа для					
исследования металлургических процессов и решения					
инженерных задач.					
2. Качественный и количественный анализ.					
Дифракционные методы анализа вещества.					
Рентгеновские дифрактометры.		2			
Применение методов рентгеноструктурного анализа для					
контроля качества металлов.					
3.				10	

3. Рентгеновский спектральный анализ									
1. Рентгеновские спектры. Вторичное (флуоресцентное) рентгеновское излучение. Рентгеноспектральный анализ. Рентгеновский волновой флуоресцентный спектрометр XRF1800 Shimadzu. Схема и ход лучей в спектрометре. Качественный и количественный рентгеновский флуоресцентный анализ.	2								
 Принцип определения химического состава вещества. Методы подготовки пробы для аналитического контроля. Спектроскопические методы анализа. Метод рентгеновского флуоресцентного анализа. Качественный и количественный рентгеновский флуоресцентный анализ. 			2						
3.							10		
4. Спектроскопические методы	'	•	•	•		•	•		
1. Атомные спектры. Атомная спектрометрия. Теоретические основы эмиссионной спектроскопии. Атомно-эмиссионный анализ. Атомно-абсорбционная спектрометрия. Закон Бугера-Ламберта-Бера. Атомноабсорбционные спектрофотометры. Качественный и количественный анализ. Стандартные растворы. Метод градуировочного графика. Спектроскопическое определение микроэлементов с использованием атомноэмиссионных спектрометров iCAP-6500 DUO, Optima-5300 DV, атомно-абсорбционных спектрометров Sollar M6. Практическое применениею	2								

2. Атомные спектры. Атомная спектрометрия. Теоретические основы эмиссионной спектроскопии. Атомно-эмиссионный анализ. Атомно-абсорбционная спектрометрия. Закон Бугера-Ламберта-Бера. Атомно-абсорбционные спектрофотометры. Стандартные растворы. Метод градуировочного графика.			2				
3.						10	
5. Термические методы анализа.							
1. Термографический анализ вещества. Физические основы термографического анализа. Принцип устройства и работы дериватографа. Дифференциальный термический и дериватографический методы анализа и их характеристики. Основные положения термического анализа. Применение методов для анализа фазовых и химических превращений в металлах и сплавах. Навыки расшифровки дериватограмм.	2						
2. Термогравиметрия. Дифференциально-термический метод анализа.			1				
3.						10	
6. Электронная микроскопия	1	1		1	1		

1. Использование электронов в электронно-оптических системах. Электростатические и электромагнитные линзы. Типы электронных микроскопов. Принцип действия просвечивающего электронного микроскопа. Особенности формирования изображения в отраженных, поглощенных, вторичных электронах. Принцип растровой микроскопии. Растровый электронный микроскоп JEOL JSM-6490LV. Определение химического состава вещества в микрообъемах кристалла методом микрорентгеноспектрального анализа.	2				
2. Типы электронных микроскопов. Особенности формирования изображения в отраженных, поглощенных, вторичных электронах. Принцип растровой микроскопии.		1			
3.				9	
4.					
Всего	12	 8		84	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Глубоков Ю. М., Головачева В. А., Дворкин В. И., Ищенко А. А. Аналитическая химия и физико-химические методы анализа: Т. 1: учебник для студентов вузов по химико-технологическим специальностям и направлениям: в 2-х т.(Москва: Издательский центр "Академия").
- 2. Алов Н. В., Василенко И. А., Гольтштрах М. А., Ищенко А. А. Аналитическая химия и физико-химические методы анализа: Т. 2: учебник для студентов вузов по химико-технологическим направлениям и специальностям: в 2-х т. (Москва: Академия).
- 3. Отто М., Гармаш А. В. Современные методы аналитической химии: Том 1: [в 2 томах] : перевод с немецкого(Москва: Техносфера).
- 4. Отто М., Гармаш А. В. Современные методы аналитической химии: Т. 2: [в 2 томах] : перевод с немецкого (Москва: Техносфера).
- 5. Большакова Т. А., Брыкина Г. Д., Гармаш А. В., Дмитриенко С. Г., Золотов Ю. А. Основы аналитической химии: Т. 1: учебник для студентов вузов по химическим направлениям: в 2 т.(Москва: Издательский центр "Академия").
- 6. Алов Н. В., Барбалат Ю. А., Борзенко А. Г., Гармаш А. В., Золотов Ю. А. Основы аналитической химии: Т. 2: учебник для студентов вузов по химическим направлениям: в 2 т.(Москва: Издательский центр "Академия").
- 7. Симонова Н. С., Харитонова Л. Г., Елсуфьев Е. В., Молотковская Н. О. Современные методы физико-химического анализа: учеб.-метод. пособие [для студентов программы подгот. 150100.68.00.01 «Современные методы исследования процессов и материалов»] (Красноярск: СФУ).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Информационная система "Единое окно доступа к образовательным ресурсам". Материаловедение. URL:http://window.edu.ru/library? p rubr=2.2.75.1
 - 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. Компьютерный учебно-методический тренажер по рентгенофазовому анализу поликристаллов с набором программ РФА и учебных заданий;
- 2. Компьютерный учебно-методический тренажер (прототип) по рентгеноструктурному анализу поликристаллов с набором программ РСАП и учебных заданий;

3. Научно-технические информационные материалы информационно-библиографического отдела НБ СФУ.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Учебные классы кафедры оборудованы мультимедийными проекторами, позволяющими проводить занятия в инновационной форме с применением активных методов обучения.

Научно-образовательные лаборатории кафедры включают следующее оборудование:

- дилатометр DIL 402C фирмы Netzch;
- дериватограф STA 449 C фирмы Netzch;
- оптико-компьютерная установка на базе микроскопов МБС–8, Метам РБ–21;
- световой инвертированный микроскоп универсального применения AxioObserver Al Carl Zeiss;
- установка для самопроизвольной пропитки пористых каркасов;
- щековая дробилка ЩД-6;
- кольцевая мельница ROCKLABS;
- ситовой анализатор ВПТ 220;
- печи муфельные SNOL 30/1300;
- весы лабораторные VIBRA AJH -220CE;
- весы RV214 OHAUS.

Исследования проводятся также в рентгеновской лаборатории ЦКП СФУ, оснащенной комплексом современного научного оборудования, включающим:

- рентгеновский флуоресцентный спектрометр XRF1800 Shimadzu;
- рентгеновский дифрактометр Shimadzu XRD-6000;
- Ик-Фурье спектрометр NICOLET 6700;
- атомно-абсорбционный спектрометр SOLAAR M.

Бакалавры имеют возможность проводить исследования также в других лабораториях ЦКП СФУ на следующем оборудовании:

- сканирующий электронный микроскоп JSM-6490 LV;
- просвечивающий электронный микроскоп JEOL JEM- 2100;
- атомно-эмиссонный спектрометр Optima 5300 DV и др.